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Abstract: We demonstrate a new in-band OSNR monitoring scheme using RF spectral
analysis of gated framing-signal of synchronous traffic. The proposed technique is simple and
robust to fiber-nonlinearity induced polarization rotation in WDM systems.
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1. Introduction
Optical signal-to-noise ratio (OSNR) monitoring is a critical function in performance monitoring of re-configurable
wavelength-division-multiplexing (WDM) networks [1]. Due to the use of dynamic filters in such networks, the
OSNR measurement must be performed within the filter bandwidth, rather than using the traditional linear
interpolation method. Previously a number of in-band OSNR monitoring schemes have been proposed, which are
mostly based on polarization-assisted techniques such as polarization-nulling method [2-4] and degree of
polarization (DOP) correlation approach [5]. These schemes are based on the assumption that the optical signal has
well-defined polarization and the amplified spontaneous emission (ASE) noise is fully randomly polarized.
However, the assumption is not always valid in practice, especially in the presence of inter-channel cross-phase
modulation (XPM) induced polarization scattering effect [2, 6], which refers to the randomization process of the
polarization states of a signal channel caused by the intensity-related nonlinear polarization rotation. In [6], large
OSNR monitoring errors were observed when the signals experienced polarization scattering in aWDM system.

Beat-noise measurement method [7] is an alternative in-band OSNR monitoring technique, which measures the
signal-ASE beat noise power density after the photo-detection to reconstruct the OSNR. Since the photo-detectors
perform optical-to-electrical conversion regardless of the polarization of the optical input, this method is immune to
the polarization scattering effect. However, the previously proposed method does not work for pseudo random bit
sequences (PRBS) longer than 215_1 or truly random data due to the limited resolution of the RF spectrum analyzer
prohibiting the distinction between the signal tones and the noise. In addition, the performance of such monitoring
scheme has not been examined in a WDM transmission system in the presence of XPM-induced polarization
scattering effect.

In this paper, we propose and demonstrate a gated-signal RF spectral-analysis technique, which takes advantage
of the periodic nature of the frame header of synchronous traffic. The gating function ensures that only the
repetitive short patterns in the frame header are analyzed so that their discrete tones in the frequency domain are
distinguishable regardless of the payload pattern length. This technique possesses a number of attractive features: it
is insensitive to polarization scattering; the monitoring setup is simple and does not require high-speed receiver at
the line rate; it works for any modulation formats, and is in principle also robust to polarization mode dispersion
(PMD). We have experimentally demonstrated the proposed OSNR monitoring technique in the presence of strong
polarization scattering for a SONET-like synchronous traffic with repetitive header structure and a payload of 223-1
PRBS. For comparison we also carried out DOP measurements. Results show that monitoring errors can be
significantly reduced by employing the proposed scheme.
2. Principle and Experimental setup
Fig.1 shows the frame structure and the nominal spectrum of a synchronous traffic, which consists of repetitive
short patterns in the header and PRBS in the payload. The discrete spectral tones due to the periodic nature of the
traffic are shown in Fig.1 (b). However, for payloads with PRBS pattern length of 223-1, the spectral tone spacing is
1.2 kHz for a 10-Gb/s NRZ signal (A1f~1/ (2n-1) Tb), which cannot be resolved by the spectrum analyzer because of
the limited resolution. In order for the noise spectrum to be revealed for beat noise measurement, the payload must
be suppressed in spectral analysis. This can be achieved by gating the synchronous traffic so that only the header is
let through, as shown in Fig. 1 (c). The corresponding spectrum is provided in Fig. 1 (d).
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Fig32. Experimental setup. MZMl Mach-Zehnder Modulator, SMF: Single Mode Fiber, PD: Photon Detector, PPG: Pulse Pattern Generator,

through the repetitive patterns in each header. In our experiment, the length of each frame is set to be 13.8 ts and
the total length of the repetitive patterns in each frame is set to be 690 ns. The repetitive pattems can by represented
by "AlI.. AlAlA2A2 ..A2", where Al is 0xF6 or "11110110", and A2 is 0x28 or "00101000". The insets in Fig.2
show the repetitive patterns and the gated optical signal. The gated signal repeats itself every 13.8Hs, corresponding
to 72.4-kHz frequency span in the frequency domain. This is the minimum frequency spacing between the spectral
tones of the gated signal, therefore, the noise becomes visible.
At the receiver, the beat noise power density can be described as follows [7, 8]:

Nbeat = Ps2g (AI/ OSNR+BIOSR2/l
where A, B are coefficients determined by the characteristics of the photodiodes, the RF amplifier gain, and the
filter properties. The measured total power can be described as:

Ptotal = Psig (I +1I1 OSNR) (2)
In the above equations, the coefficients ofA and B can be calibrated in advance, and the OSNR can be obtained

from Nbe,t and Ptotal Note that the OSNR in these equations is calculated using the bandwidth of theAWG filter.
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Fig.4 (a) provides the results of

the measured beat noise power
density at 300 MHz versus the 1odBrdij' 2 M,
OSNR measured with the GSA at
different signal powers. Fig. 4 (b)
shows the measured OSNR values
and monitoring errors versus the
OSNR values based on OSA -80 dBm -103.5 dB
measurements. In the OSNR range (a) (b)
of 10 - 27 dB, the maximal Fig.3. RF spectrum of the gated signal (a) Central frequency=1.45 GHz, Span=2.9 GHz, RES=3
monitoring error of the proposed MHz (b) Central frequency=300 MHz, Span=200 kHz, RES=1 kHz
method is less than 0.8 dB. For
higher OSNR values, the errors are mainly caused by the limited extinction ratio of the modulator, which leads to
payload power leakage and result in overestimation of the beat noise. Fig.4 (c) shows the monitored OSNR and the
errors using the DOP method. As can be seen, the monitoring errors range from 2 to 7.5 dB when the OSNR
changes from 10 to 27 dB, which can be attributed to the XPM induced polarization scattering effect [6].
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Fig.4. (a) measured beat noise power density (b) OSNRs and monitoring errors by RF spectral analysis at different signal powers. (c) OSNRs
and monitoring errors with the DOP method. The X-axis is the measured OSNR by the OSA at 0.1 nm RES

4. Conclusions
We have proposed a novel OSNR monitoring method based on beat noise measurement for the gated header of
synchronous traffic. Our proposed method is immune to the XPM-induced polarization scattering effect, which is
common in WDM systems. The scheme does not require high speed receivers. In principle, the method is also
insensitive to PMD effects. Its advantage over the DOP method in the presence of polarization scattering has been
experimentally verified. OSNR monitoring error of less than 0.8 dB is achieved in the OSNR range of 10 - 27 dB in
a 4 x 10-Gb/s WDM system, where the XPM induced polarization scattering effect has significantly deteriorated the
OSNR measurement based on the DOP method.
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